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FOREWORD 

The work reported herein was done at the request of the Atomic 
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The test results presented herein were obtained by ARO,   Inc.  (a 
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tems Command (AFSC),   Arnold Air Force Station,   Tennessee,   under 
Contract AF40(6Q0>-1200.    The tests were conducted from October 10 to 
November 10,   1967,   under ARO Project No.   VB1841,   and the manuscript 
was submitted for publication on January 11,   1968. 
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ABSTRACT 

Selected test results are presented to show the effect of aspect ratio 
on the aerodynamic and heat-transfer characteristics of the SNAP-29 
fuel block which is a flat plate configuration with cylindrical edges. 
Static-force and moment and heat-transfer data were measured on models 
having aspect ratios of 1.7 and 3. 2 at angles of attack from 0 to 90 deg 
and yaw rotations from 0 to 90 deg.    The tests were conducted at Mach 
number 8 and Reynolds numbers from 0. 22 to 0.46 million,  based on 
model length. 
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SECTION I 
INTRODUCTION 

The fuel block of the SNAP-29 polonium fueled radioisotopic gener- 
ator is a flat plate with rounded edges and corners,   the edge shape having 
been determined from previous testing on a low aspect ratio (approxi- 
mately 1. 1) configuration,  Ref.   1.    It was assumed in the previous tests 
as in the present tests that the fuel block would be ejected from the gen- 
erator unit prior to re-entry and only the fuel block would be designed 
for intact re-entry.    It is necessary,  therefore,  that the aerodynamic 
and heat-transfer characteristics of the fuel block be known so that tra- 
jectory and aeroheating predictions can be made.    Following the previous 
tests and selection of the edge shape,   other configurations of different 
aspect ratio are being considered.    Two of these configurations,   desig- 
nated M2 and M3 and having aspect ratios of 3. 2 and 1. 7,  respectively, 
were investigated in the present tests to provide part of the necessary 
information required for selection of an optimum fuel block configura- 
tion for SNAP-29. 

The tests were conducted in the 50-in.  hypersonic tunnel (Gas Dy- 
namic Wind Tunnel,  Hypersonic (B)) of the von Karman Gas Dynamics 
Facility (VKF),  AEDC,   at Mach number 8 and Reynolds numbers based 
on model length of 0. 26 and 0. 46 million for the force and moment tests 
and 0. 22 and 0. 40 million for the heat-transfer tests.    Model rotation 
angles (yaw rotations) from 0 to 90 deg were investigated at angles of 
attack from 0 to 90 deg. 

SECTION II 
APPARATUS 

2.1   WIND TUNNEL 

Tunnel B is a continuous,   closed-circuit, variable density wind tun- 
nel with an axisymmetric contoured nozzle and a 50-in. -diam test section. 
The tunnel operates at a nominal Mach number of 6 or 8 at stagnation pres 
sures from 20 to 230 and from 50 to 900 psia,  respectively,  at stagnation 
temperatures up to 1350°R.    The model may be injected into the tunnel for 
a test run and then retracted for model cooling or model changes without 
interrupting the tunnel flow.    A description of the tunnel may be found in 
Ref.  2. 
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2.2  MODELS AND SUPPORT 

The SN'AP-29 fuel block is basically a flat plate with rounded edges 
and corners.    Four force models and one heat-transfer model were 
supplied by the Martin Company,   and the basic dimensions of each model 
are shown in Fig.   1 along with the full-scale dimensions.    The model 
aspect ratios were 3.2 and 1. 7 which comprised configurations M2 and 
M3,   respectively. 

The force models and four balance-model adapters (provided to obtain 
the desired angle-of-attack range) were constructed of 321 stainless steel 
and are  shown in Fig.   2a.    The  0.74-scale M2 model was tested at 
angles of attack from -7 to 35 deg using the 8- and 22. 5-deg adapters. 
The 0. 74-scale M3 model was tested only with the 8-deg adapter up to 
23-deg angle of attack because of tunnel blockage.    Angles of attack 
from 30 to 90 deg were obtained with the 0. 50-scale M2 and 0. 37-scale 
M3 models by using the 45- and 75-deg adapters.    Model rotation angles 
from 0 to 90 deg in 15-deg increments were accomplished by simply 
rotating each model on the balance-model adapter about the model geom- 
etric center.    The balance was installed inside the 8-deg adapter; how- 
ever,  the 22. 5-,  45-,   and 75-deg adapters required a sting-mounted 
windshield (Fig.  2a) to shield the balance from the airstream.    The 
0. 74-scale M2 model is shown installed in the tunnel in Fig.   2b.    The 
model force and moment reference system is shown in Fig.  2c. 

The 0.40-scale heat-transfer model is shown in Fig.  3.    The basic 
model simulated configuration M2,   and the M3 configuration was formed 
by adding an extension,  which was not instrumented,  to the basic model 
(see Fig.   3a).    The basic model was instrumented with 94 Chromel®- 
Alumel® thermocouples.    Both the basic model and the extension were 
of thin skin construction,  nominally 0.037 in.  thick,  and were fabricated 
from Inconel 600.    A phenolic honeycomb,  which had holes enlarged to 
0.25-in.   diameter at each thermocouple location to minimize conduction 
losses,  was bonded to the model skin to provide additional support for 
the flattened areas of the model.    The model was attached to an adjust- 
able sting which provided prebends of 15,  45,   and 75 deg relative to 
the tunnel centerline.    These prebends with the ±15-deg travel of the 
model support system provided an angle-of-attack range from 0 to 
90 deg.    Model rotation angles of 0,   -45,   -60,2,   -72.5,   -90,   -180, 
-240. 2,   and -270 deg were obtained by rotating the model at the sting- 
to-model attachment.    Rotations of -180,   -240.2,  and -270 deg were 
necessary in order to locate the instrumented portion of configuration 
M3 where the noninstrumented portion was located on rotations of 0, 
-60.2,   and -90 deg,   respectively. 
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2.3   INSTRUMENTATION 

2.3.1    Force 

Model forces and moments were measured with a six-component, 
moment-type,  strain-gage balance supplied and calibrated by VKF. 
Before the test,  combined balance static loadings were applied,  simu- 
lating the model loading range anticipated during the test.    The uncer- 
tainties listed below correspond to the differences between the applied 
loads and the values calculated by the final data reduction balance 
equations. 

Balance Component 

Normal force, lb 

Pitching moment,  in. -lb 

Side force,  lb 

Yawing moment,  in. -lb 

Rolling moment, in. -lb 

Axial force, lb 

2.3.2   Heat Transfer 

The heat-transfer model surface temperature was measured with 
thermocouples welded into holes in the model surface.    Thermocouple 
outputs were recorded on magnetic tape,   at a rate of 20 times per 
second,  from the start of the injection cycle until about 2 sec after the 
model reached the tunnel centerline.    From calibrations of typical 
thermocouple wires and a knowledge of the system sensitivity and noise 
level,   the precision of the VKF temperature recording system is esti- 
mated to have been ±0. 2°R/sec or ±2 percent,  whichever was greater. 

Model flow field schlieren photographs were obtained during all 
tests.    Figure 4 shows typical photographs. 

SECTION III 

PROCEDURE 

3.1   TEST CONDITIONS 

The tests were conducted at the following conditions: 

Design Maximum 
Load Static Loads Uncertainties 

±200 ±  60 ±0.40 

±680 ±240 ±1. 20 

±200 ±  50 ±0. 35 

±680 ±   75 ±1. 50 

±100 ±  50 ±0.45 

50 100 ±0.35 
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M. R. 2f   x  10"6 

7. 86 0. 26 

7. 86 0.46 

7. 89 0.26 

7. 90 0.46 

7. 89 0. 22 

7. 89 0.40 

p0,   psia       T0J  °R        qe,   psia       StF- R_ 

70 

70 

120 

150 

120 

120 

A complete test summary is presented in Table I. 

3.2   DATA REDUCTION 

The heat-transfer data were reduced using the temperature-time 
histories from the thermocouples and the equation 

1165 0. 35   

1165 0.35   

1205 0. 59   

1230 0.73   

1205 0. 59 0.0067 

1205 0. 59 0.0067 

where 

i      dTw 

d L 

w = 525.3 lb/ft3 

b = measured skin thickness at each thermocouple 
(nominally 0. 0030 ft) 

c = 1. 4861 x 10-2 + 3. 2470 x 1Q-4TW - 3. 8572 x 10"7TW
2 

+ 1.6815 x 10-10TW
3,   Btu/lb-°R 

This equation neglects conduction and radiation losses.    The values of w, 
b,   and c were supplied by the Martin Company.    Stanton numbers were 
computed using the equation 

St = -L 

and these Stanton numbers were ratioed to a theoretical Stanton number, 
Stp p   ,   computed from the Fay and Riddell theory (Ref.   3) for the stag 
nation point heating of a sphere having a 1 -ft radius.    The heat-transfer 
data presented were evaluated at the time the model reached tunnel 
centerline. 

Measured leading edge heat-transfer values were compared with a 
theoretical Stanton number computed for the stagnation line on an un- 
swept cylinder using the theory of Ref.  3 to obtain the stagnation point 
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heating rate on a sphere having the same radius as the cylinder, 
0.0167 ft,  and the equation 

(qs)    ,    .      =  0.729 ((K)    . 1      cvlinoer »^   sphere 

where the constant,  0. 729,   was obtained from Ref.  4,   p.   300,   Eq. 
(8. 3. 20).    Theoretical flat plate Stanton numbers for a = 0 were com- 
puted using the method of Ref.   5. 

SECTION IV 

RESULTS AND DISCUSSION 

The aerodynamic characteristics of configuration M2,   aspect 
ratio = 3.2,   are presented in Fig.   5 for model rotation angles of 0,   30, 
45,   60,  and 90 deg.    It should be noted that the force and moment refer- 
ence system used for the data presented is independent of the model 
rotation angle,   7.    Increasing "y resulted in decreasing CJ\J which was 
first observed near 40<a<75 deg; however,   increasing 7 to 90 deg 
resulted in Cjsj being definitely lower at all angles of attack up to 
approximately 30 deg (Fig.   5a).    Large increases in Cm at angles of 
attack from approximately 25 to 40 deg,   depending on 7,   are attributed 
to a center-of-pressure shift caused by bow shock detachment which was 
discussed in Ref.   1.    The peak values of Cm increased with 7 resulting 
in increased stability at the trim angle of attack,  a - 90 deg.    Indicated 
trim angles of attack slightly less than 90 deg are attributed to a possible 
misalignment between the model and balance (a misalignment of 0. 015 in. 
would account for the discrepancies shown).    The M2 configuration was 
longitudinally unstable for all values of 7 from a = 0 to a = 60 deg where 
it became stable about the a = 90 deg trim angle.    Systematic decreases 
in Cj^4- occurred with increased a and increasing 7 as expected.    Direc- 
tional and lateral stability data for configuration M2,   Fig.   5b,   show 
that negative Cy values were produced for model rotations between 0 and 
90 deg with the largest value occurring at a - 0 and 7 = 30 deg.    Cn was 
relatively insensitive to variations in a and 7 with only slight variations 
occurring near 35 < a < 65 deg.    It should be noted here that Cy and Cn 
in Fig.   5b and C^t in Fig-   5a are dominated by the model leading edge 
and variations in these coefficients with 7 are basically leading edge 
sweep effects.    Rather large variations in Cj? were measured,  the largest 
occurring at 7 - 30 deg.    These rolling moments are believed to be caused 
by the center-of-pressure shift mentioned previously.    With the model 
rotated to an angle between 0 and 90 deg,  the center of pressure would 
shift diagonally across the model as angle of attack varied,  inducing a 
rolling moment; whereas at 7 = 0 and 90 deg,  it would shift along the 
model centerline affecting only the pitching moment. 
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The effects of aspect ratio on the model aerodynamic characteristics 
are illustrated in Fig.   6 for 7=0 and 60 deg.    This figure shows that 
similar trends were obtained on both M2 (AR = 3.2) and M3 (AR = 1.7) 
with the largest coefficients generally occurring on the higher aspect 
ratio configuration.    It should be noted that evaluation of the effects of 
varying aspect ratio is somewhat obscured because the model planform 
area was used as the reference area and some coefficients (C&+,  Cy, 
and Cn) are dominated by the leading edge as previously mentioned. 

Heat-transfer distributions along the longitudinal centerline of con- 
figuration M2 are presented in Fig.   7 for model rotations of 0,   -45,   and 
-90 deg and angles of attack from 0 to 90 deg.    A stagnation line value was 
computed for the leading edge at a = 0 using Refs.   3 and 4 as discussed in 
Section 3, 2.    The measured value is shown to be approximately 25 per- 
cent lower than predicted.    This difference is attributed to conduction 
losses.    Measurements at a - 0 on the model flat surface are shown to be 
in good agreement with predicted flat plate values. 

The effect of aspect ratio variation on the heat-transfer distributions 
along the longitudinal centerline is illustrated in Fig.   8 for y = 0 and 
-90 deg at angles of attack of 0 and 70 deg.    These data show that similar 
results were obtained on both configurations. 
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Flow,   v=0 

T 
1/2 

i. 

Moment  Reference 

a/2 

It» 

z/2 =11= 
z/2 R (Typ) 

Solid Lines Show Configuration M„ 

Dashed Lines Show Configuration M_ 

Moment Reference Located at Geometric Center 
of Each Force Model 

Type Model Configuration Scale I,   in. s , in. z, in. S. in.2 

Full Scale M2 1.00 10,32 32.68 1.00 337.3 

Force «2 0.74 7.64 24.19 0.74 184.8 

Force M2 0,50 5.16 16.34 0.50 84,3 

Heat Transfer »2 0.40 4.13 13. 07 0.40 54.0 

Full Scale M3 1.00 18.74 32.68 1.00 612.4 

Force M3 0.74 13.87 24.19 0.74 335.5 

Force «3 0.37 6.94 12.09 0.37 83.9 

Heat Transfer M3 0.40 7.50 13.07 0.40 98.0 

Fig. 1 Model Geometry 
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a.   Photograph of Models and Bolonce-Model Adapters 

Fig. 2   Force Models 
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b.   Model Installation Photograph 

Note:     At  a  -   0 and -,   -  0  the- 
model   planform   area   is 
parallel,   and   the  span   Is 
iinrmal   to   the   free   stream. 

c.   Force and Moment Reference System 

Fig. 2   Concluded 
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Configuration  M, 

b.    Photographs Showing Configurations M* and Mo 

Fig. 3   Concluded 
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a = 5 deg 
8-deg Balance-Model 
Adapter, 0.74 Scale 

a = 20 deg 
22.5-deg Balance-Model 

Adapter, 0.74 Scale 

= 37 deg 
45-deg Balance-Model 
Adapter, 0.50 Scale 

Q = 90 deg 
75-deg Balance-Model 
Adapter, 0.50 Scale 

Fig. 4   Typicol Schlieren Photographs, Configuration M2 Force Models, 0 
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Fig. 7   Heat-Transfer Distributions olong the Longitudinal Center- 

line of Configuration M2, y = 0, -45, and -90 deg 
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Open Symbols - Configuration H, 

Solid Symbols - Configuration M» 

0.20R 
Thermocouple Locations Shown for Configuration M„ 

St/St 

p  - 4.09 x 10  , lb-ft 
3-1 

UB - 3.665 x 10 . ft-sec 

H    -  2.93  x   102,   Btu-lb"1 
o 

4    r- 

St/StF.R.      2 
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o fyin-<m—tm  m   m 
0.2 0.4 0.6 

x/l 
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Fig. 8   Effect of Aspect Ratio on Longitudinal Centerline 

Heat-Transfer Distributions, v - 0 and -90 deg 
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TABLE I 
TEST SUMMARY 

CO 

Model Reg x 1Q"S 

0. 74 Scale M2        0.26 
I 

0. 74 Scale M3       0. 4(i 

0. 50 Scale M2       0. 26 

0.37 Scale M?       0.46 

Model Ret x 1Q-6 

0.40 Seal«, M2       0.22 

0.40 Scale Mg        0.40 

Force Tests 

Balance-Model Adapter,  deg 

8 
22.5 

8 

45 
75 

45 
75 

Heat-Transfer Tests 

 a,  deg  

0,  5,   10,  20, 30, 40,  50,  60,   70,  80,  85,  90 

0,  5,   10,  20, 30, 40,   50,  60,   70 

0,   5,   10,  20,  30,  40,   50,   60,   70,   75,   80,   85 

a-Range,  deg 

-7 tö 23 
7.5 to 37.5 

-7 to 23 

30 to GO 
60 to 90 

30 to 60 
60 to 90 

7.   deg 

0,   15.  30, 45,  60,   75,  60 

0,   15,  30,   60,   90 

0,   15,   30, 45,   60,   75,  90 
I 

7, defl 

0,   -45,   -72.5,   -90 

180 0,   -60.2,   -90, 

-240 

> 
m 
a 
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